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The synthesis commenced (Scheme 2) with Pd(0)-catalyzed
cross-coupling betweedand vinyl stannand,® affording diene
5in 80% yield. Compound was converted to ra6-by a two-
step procedure involving Cu(l)-mediated conjugate addition of a
PMB-protected hydroxymethyl group followed by C-acylation of
a subsequently generated lithium enolate using Mander’s reagent
(NCCOMe).” Exposure of ra® to Corey's oxazaborolidine
reduction cataly8tand catecholborane initiated an efficient kinetic
resolution that directly generated-)-6 from rac6 in 90% ee
and 31% vyield (theoretical yield is 50%).

The crucial fragment coupling/tandem cyclization was con-

A, 2) are closely related fungal metabolites that were isolated as ducted by conversion of enantiomerically pufé to Grignard
a consequence of their ability to inhibit squalene synthase andreagent8 followed by exposure to+)-6. This stereospecific

Ras farnesyltransferase (Schemé Bpth molecules present a

reaction directly afforded compour@din 53% vyield. In a single

dense array of diverse, highly oxygenated and sensitive func- transformation (Scheme 3), cyclopentanotg-¢ was alkylated
tionality mounted upon an unusual bicyclo[4.3.1]deca-1(9)-ene With vinyl Grignard8, affording a bromomagnesium alkoxide that
ring system. These compounds have inspired many laboratoriesunderwent anion-accelerated oxy-Cope rearrangéfrfetiowed

to develop approaches to the CP core ring systémcjuding
studies by DanishefsRyand co-workers that raised the question

by spontaneous transannular Dieckmann-like cyclization to deliver
9. Compound9 was transformed t@-ketoesterlO by deproto-

of a possib|e new natura”y Occurring fam||y member, and by nation under thermodynamic control followed by C-acylation with
Nicolaout and co-workers that resulted in the first syntheses of NCCO:Me.

(+)-1 and ()-2. We recently reported a fragment coupling/

To prepare for installation of the quaternary center af C

tandem cyclization reaction comprising a chelation-controlled compoundlO was converted to enolcarbonédt# by a five-step
alkylation, an anion accelerated oxy-Cope rearrangement, and gprocedure that included removal of the PMB group, two-step
transannular cyclization that resulted in direct synthesis of the oxidation to the carboxylic acid, protection of the acid as a MOM

core structures ofl and 2 from readily accessible starting
materials® This contribution describes a synthesis {1 using

ester, and generation of the enol carbonate. Exposure of enol
carbonatell to TMSOTf and (MeOJ)CH initiated a multistep

a substantially more complex version of the same fragment and multitask one-pot reaction that led directly to compolid

coupling/tandem cyclization reaction.
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During this transformation, the quaternary center ai @Was
installed, the pseudoester cage ring system was assembled, and a
free acid at @, was liberated for eventual homologation.

One plausible mechanism for the direct conversiod bf14
is displayed in Scheme 4 and begins with TMSOTf-promoted
ionization of the enol carbonate to liberate silylketene acE2al
and a carbomethoxenium ion fragment. RecombinatidtP@ind
the acyl cation at ¢ affords intermediatel3,'? poised for
TMSOTf-catalyzed ionization of the .OMOM group and cy-
clization to form the pseudoester cage ring system as shown.
Following acyl-transfer and cyclization, TMSOTf catalyzes
deprotection of the MOM ester at;£to generate acid4.

One carbon homologation of the acid &% was greatly
complicated by the surprising sensitivity of tlydactone func-
tionality. A two-step sequence comprising diazoketone formétion
and photolytic Wolff rearrangement accomplished the homolo-
gation in modest yield@ Following homologation, thg-ketoester
was triflated using KNPr, and T£O to afford 15 in 55% yield.

Attempts to carbonylate the enoltriflate &6 using CO and
catalysts derived from Pd complexed to phosphine ligands were
unsuccessful due to the extreme steric hindrance surrounding the
triflate. Following extensive experimentation, it was discovered
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aReagents: (a),E)-MesSNnCH=CH(CH)Me @), Pd(dba}, PPh, DMF, 65°C, 80%. (b) Li(PMBOCH,)Cu(thiophene)CN, TMSCI, THF-78°C.
(c) "BulLi, Et,O, =78 — 0 °C, NCCQMe, —78 — 0 °C, 62% over two steps. (d}H)-Me—CBS, catecholborane, GBI,, 23 °C, 90%, ee, 31%. (e)
‘BuLi, Et,O, —78 °C, then MgBp —78 — 23 °C, THF, then add)-6 in toluene,—78 — 23 °C, dilute to 0.01 M, 53%. (f) KHMDS, THF, then
NCCOMe, —78— 0 °C, 51%. (g) BC4, —78— —30°C. (h) Dess-Martin periodinane, pyridine, #0—CH.Cl,, 23°C. (i) NaClG, NaH,POy, 2-methyl-
2-butene, MeOHH;0, 23°C. (j) MOMCI, EtsN, CH.Cl, 23°C. (k) KHMDS, THF, then NCC@Me, —78—50°C. (I) TMSOTf, HC(OMe}, CH,Cl>,
—78—0°C, 83-92% over six steps. (m) MsClI, 8, THF, 0°C, then CHN, —50 °C. (n) hv, BUOH—-E0, 23°C, 12% over two steps. (0) KR,
Et,O, then T§O, —78 — 0 °C, 55%. (p) Pd(OAg) P(OMe}, CO (500 psi), BN, THF—MeCN, 23°C, 70%. (q) HCGH, 23 °C, 79%.

that the crucial carbonylation could be accomplished by exposure Scheme 4
of 15to a catalyst derived from Pd(OAcNnd P(OMe), affording r (\0 Me
anhydride ortho estet6 in 70% yield* O b
Global deprotection ol6 was accomplished upon treatment ] vy”~OMe

with neat HCQH to directly afford CP-263,114 (phomoidride TMSOTS > A
B, 1) in 79% yield. A synthetic sample df was identical to 11 ————=| MeO,C
authentic samples of the natural product as judgetHb{MR, 5 (MeO)3CH o
IR, HRMS, HPLC, and TLC analyses. The optical rotation *7 12 o
measured for synthetit was fo]p +14° (c = 0.0033, CHCI,) MeO SiMes  rearangamsent
while naturall is reported to haved]]p —11° (¢ = 0.48, CH- L
Cl,).12 This assignment of the absolute configurationlaf in

agreement with the recent assignment made by Nicolaou and co-
workers?#c
Scheme 3 —> 14
5
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< X Me . . . .
8 /) cyclization 6 + 8 — 9)!6 and a Lewis acid-catalyzed & C

(+)-6 ——»

acyl transfer reactionl(l — 14). In addition, the discovery of a
Bngc') OPMB a"""g)'gfg%’:ffe" Pd(0)-P(OMe) complex that catalyzes the carbonylation of a

highly hindered enol triflate where many other Pd catalysts fail
_ may lead to future applications of Pd{op(OMe)-catalyzed
(\0 /" Me reactions involving hindered substratés.
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During the course of our synthesis oft)1, two new
transformations were developed that may have applications;du
beyond their use in this synthesis; a fragment coupling/tandem g,
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